A Cell-to-Cell Equalizer Based on Three-Resonant-State Switched-Capacitor Converters for Series-Connected Battery Strings
نویسندگان
چکیده
Abstract: Due to the low cost, small size, and ease of control, the switched-capacitor (SC) battery equalizers are promising among active balancing methods. However, it is difficult to achieve the full cell equalization for the SC equalizers due to the inevitable voltage drops across Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) switches. Moreover, when the voltage gap among cells is larger, the balancing efficiency is lower, while the balancing speed becomes slower as the voltage gap gets smaller. In order to soften these downsides, this paper proposes a cell-to-cell battery equalization topology with zero-current switching (ZCS) and zero-voltage gap (ZVG) among cells based on three-resonant-state SC converters. Based on the conventional inductor-capacitor (LC) converter, an additional resonant path is built to release the charge of the capacitor into the inductor in each switching cycle, which lays the foundations for obtaining ZVG among cells, improves the balancing efficiency at a large voltage gap, and increases the balancing speed at a small voltage gap. A four-lithium-ion-cell prototype is applied to validate the theoretical analysis. Experiment results demonstrate that the proposed topology has good equalization performances with fast equalization, ZCS, and ZVG among cells.
منابع مشابه
Analyzing a Resonant Switched- Capacitor Converter for Improving Lithium-Ion Battery Cells Balancing Speed
Active techniques based on the switchedcapacitor converters (SCCs) are used in recent years widely for battery cell balancing applications, due to lack of bulky magnetic components. In addition, these converters are easily be integrated to reduce the volume. Despite of all these benefits, SCCs have some disadvantages such as number of active switches, currents spikes, low balancing speed, and h...
متن کاملIndividual Cell Equalization for Series Connected Lithium-Ion Batteries
A systematic approach to the analysis and design of a bi-directional Cûk converter for the cell voltage balancing control of a series-connected lithium-ion battery string is presented in this paper. The proposed individual cell equalizers (ICE) are designed to operate at discontinuous-capacitor-voltage mode (DCVM) to achieve the zero-voltage switching (ZVS) for reducing the switching loss of th...
متن کاملOptimal Intelligent Control of Plug-in Fuel Cell Electric Vehicles in Smart Electric Grids
In this paper, Plug-in Fuel Cell Electric Vehicle (PFCEV) is considered with dual power sources including Fuel Cell (FC) and battery Energy Storage. In order to respond to a transient power demand, usually supercapacitor energy storage device is combined with fuel cell to create a hybrid system with high energy density of fuel cell and the high power density of battery. In order to simulate the...
متن کاملSynthesis and Analysis of a Switched-Capacitor-Based Battery Equalizer Using Level-Shift Circuits
A switched-capacitor-based battery equalizer using level-shift circuits is proposed in this paper. In conventional equalizers using diode switches, the threshold voltage of diode switches causes a decrease in power efficiency. Unlike conventional equalizers, the proposed equalizer alleviates the threshold-voltage-drop of switches by using level-shift circuits. Therefore, the proposed equalizer ...
متن کاملOptimal power management of fuel cell hybrid vehicles
This paper presents a control strategy developed for optimizing the power flow in a Fuel Cell Hybrid Vehicle structure. This method implements an on-line power management based on the optimal fuzzy controller between dual power sources that consist of a battery bank and a Fuel Cell (FC). The power management strategy in the hybrid control structure is crucial for balancing between efficiency an...
متن کامل